

Newton's Academy MATHEMATICS AND STATISTICS

Time: 3 Hrs. Max. Marks: 80

General instructions:

The question paper is divided into **FOUR** sections.

- **Section A:** Q.1 contains **Eight** multiple choice type of questions, each carrying **Two** marks. Q.2 contains **Four** very short answer type questions, each carrying **one** mark.
- (2) **Section B:** Q.3 to Q. 14 contain **Twelve** short answer type questions, each carrying Two marks. (Attempt any Eight)
- (3) **Section C:** Q.15 to Q. 26 contain Twelve short answer type questions, each carrying Three marks. (Attempt any Eight)
- **(4) Section D:** O.27 to O. 34 contain **Eight** long answer type questions, each carrying **Four** marks. (Attempt any Five)
- Use of log table is allowed. Use of calculator is not allowed. (5)
- Figures to the right indicate full marks. (6)
- Use of graph paper is not necessary. Only rough sketch of graph is expected. (7)
- For each multiple choice type of question, it is mandatory to write the correct answer along with its (8) alphabet, e.g. (a)...../(b)...../(c)...../(d)....., etc. No marks shall be given, if ONLY the correct answer or the alphabet of correct answer is written. Only the first attempt will be considered for evaluation.
- (9)Start answer to each section on a new page.

Q.1.	Select and write the correct answer for the following multiple choice type of questions	: [16]
------	---	--------

- The negation of $p \land (q \rightarrow r)$ is _ (a) $\sim p \land (\sim q \rightarrow \sim r)$ (c) $\sim p \land (\sim q \rightarrow r)$ (i)

(2)

- In $\triangle ABC$ if $c^2 + a^2 b^2 = ac$, then $\angle B =$

- (2)
- Equation of line passing through the points (0, 0, 0) and (2, 1, -3) is _____.

(b) $\frac{x}{2} = \frac{y}{-1} = \frac{z}{-3}$

(c) $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$

(d) $\frac{x}{3} = \frac{y}{1} = \frac{z}{2}$

(2)

- (iv) The value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{k} \times \hat{i}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is _____. (a) 0 (b) -1 (c) 1

- (d)
- (2)

- If $f(x) = x^5 + 2x 3$, then $(f^{-1})'(-3) =$ _____.
 - (a)

- (d)
- (2)

- The maximum value of the function $f(x) = \frac{\log x}{x}$ is _____.
- (b) $\frac{1}{a}$
- (d)
- (2)

- (vii) If $\int \frac{dx}{4x^2 1} = A \log \left(\frac{2x 1}{2x + 1} \right) + c$, then $A = \underline{\hspace{1cm}}$.
 - (a) 1

- (d)
- (2)

(viii) If the p.m.f of a r.v.X is

$$P(x) = \frac{c}{x^3}$$
, for $x = 1, 2, 3$
= 0, otherwise,

then E(X) =_

(a)
$$\frac{216}{251}$$

(b) $\frac{294}{251}$

(c)
$$\frac{297}{294}$$

(d)
$$\frac{294}{297}$$

(2)

[4]

(1)

[16]

[24]

Q.2. Answer the following questions:

(i) Find the principal value of
$$\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$$

(ii) Write the separate equations of lines represented by the equation $5x^2 - 9y^2 = 0$ (1)

(iii) If $f'(x) = x^{-1}$, then find f(x)

(iv) Write the degree of the differential equation

$$(y''')^2 + 3(y'') + 3xy' + 5y = 0$$
 (1)

SECTION - B

Attempt any EIGHT of the following questions:

Q.3. Using truth table verify that:

$$(p \land q) \lor \sim q \equiv p \lor \sim q$$
 (2)

Q.4. Find the cofactors of the elements of the matrix $\begin{bmatrix} -1 & 2 \\ -3 & 4 \end{bmatrix}$ (2)

Q.5. Find the principal solutions of $\cot \theta = 0$

Q.6. Find the value of k, if 2x + y = 0 is one of the lines represented by $3x^2 + kxy + 2y^2 = 0$ (2)

Q.7. Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5.

Q.8. Find the cartesian co-ordinates of the point whose polar co-ordinates are $\left(\frac{1}{2}, \frac{\pi}{3}\right)$. (2)

Q.9. Find the equation of tangent to the curve $y = 2x^3 - x^2 + 2$ at $\left(\frac{1}{2}, 2\right)$.

Q.10. Evaluate: $\int_{0}^{\frac{\pi}{4}} \sec^4 x \, dx$ (2)

Q.11. Solve the differential equation $y \frac{dy}{dx} + x = 0$ (2)

Q.12. Show that function $f(x) = \tan x$ is increasing in $\left(0, \frac{\pi}{2}\right)$.

Q.13. From the differential equation of all lines which makes intercept 3 on x-axis. (2)

Q.14. If $X \sim B(n, p)$ and E(X) = 6 and Var(X) = 4.2, then find n and p. (2)

SECTION - C

Attempt any EIGHT of the following questions:

Q.15. If
$$2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x)$$
, then find the value of x. (3)

Q.16. If angle between the lines represented by $ax^2 + 2hxy + by^2 = 0$ is equal to the angle between the lines represented by $2x^2 - 5xy + 3y^2 = 0$, then show that $100(h^2 - ab) = (a + b)^2$. (3)

Q.17. Find the distance between the parallel lines $\frac{x}{2} = \frac{y}{-1} = \frac{z}{2}$ and $\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z-1}{2}$. (3)

Practice Paper-4

- **Q.18.** If A (5, 1, p), B(1, q, p) and C(1, -2, 3) are vertices of a triangle and $G\left(r, \frac{-4}{3}, \frac{1}{3}\right)$ is its centroid, then find the values of p, q, r by vector method. (3)
- **Q.19.** If $A(\bar{a})$ and $B(\bar{b})$ be any two points in the space and $R(\bar{r})$ be a point on the line segment AB dividing it internally in the ratio m: n then prove that $\bar{r} = \frac{m\bar{b} + n\bar{a}}{m+n}$. (3)
- **Q.20.** Find the vector equation of the plane passing through the point A(-1, 2, -5) and parallel to the vectors $4\hat{i} \hat{j} + 3\hat{k}$ and $\hat{i} + \hat{j} \hat{k}$. (3)
- **Q.21.** If $y = e^{m \tan^{-1} x}$, then show that $(1+x^2) \frac{d^2 y}{dx^2} + (2x-m) \frac{dy}{dx} = 0$ (3)
- **Q.22.** Evaluate: $\int \frac{\mathrm{d}x}{2 + \cos x \sin x}$ (3)
- **Q.23.** Solve $x + y \frac{dy}{dx} = \sec(x^2 + y^2)$ (3)
- Q.24. A wire of length 36 meters is bent to form a rectangle. Find its dimensions if the area of the rectangle is maximum. (3)
- Q.25. Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X. (3)
- Q.26. If a fair coin is tossed 10 times. Find the probability of getting at most six heads. (3)

SECTION - D

Attempt any FIVE of the following questions:

- **Q.27.** Without using truth table prove that $(p \land q) \lor (\sim p \land q) \lor (p \land \sim q) \equiv p \lor q$ (4)
- **Q.28.** Solve the following system of equations by the method of inversion x y + z = 4, 2x + y 3z = 0, x + y + z = 2 (4)
- Q.29. Using vectors prove that the altitudes of a triangle are concurrent. (4)
- Q.30. Solve the L.P.P. by graphical method,

Minimize z = 8x + 10ySubject to $2x + y \ge 7$, $2x + 3y \ge 15$, $y \ge 2$, $x \ge 0$

 $2x + 3y \ge 13,$ $y \ge 2, x \ge 0$ (4)

Q.31. If x = f(t) and y = g(t) are differentiable functions of t so that y is differentiable function of x and $\frac{dx}{dt} \neq 0$, then prove that:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$$

Hence find
$$\frac{dy}{dx}$$
 if $x = \sin t$ and $y = \cos t$. (4)

Q.32. If u and v are differentiable function of x, then prove that:

$$\int uv \, dx = u \int v \, dx - \int \left[\frac{du}{dx} \int v \, dx \right] dx$$

Hence evaluate $\int \log x \, dx$ (4)

- **Q.33.** Find the area of region between parabolas $y^2 = 4ax$ and $x^2 = 4ay$. (4)
- **Q.34.** Show that: $\int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) dx = \frac{\pi}{8} \log 2$ (4)

[20]